Definisi Big Data
Big Data bisa berarti macam-macam bagi orang dengan latar-belakang dan minat yang berbeda-beda. Sebelumnya, istilah Big Data telah digunakan untuk mendeskripsikan volume data yang masif yang dianalisa oleh berbagai organisasi besar seperti Google atau riset-riset project di NASA. Tetapi bagi kebanyak perusahaan, itu adalah istilah yang relatif: “Big” bergantung pada ukuran suatu organisasi. Poinnya adalah lebih pada menemukan nilai/manfaat baru di dalam dan diluar sumber-sumber data konvensional. Dengan memperluas batas-batas analisa data akan menyingkap wawasan-wawasan dan peluang baru, dan kata “big” bergantung pada dimana kita mulai dan bagaimana kita menjalankannya. Coba kita ambil deskripsi populer berikut tenttan “Big Data”: Big Data melampaui pencapaian hardware yang umum digunakan dan/atau kemampuan software dalam mengambil, mengelola, dan memproses data dalam rentang waktu yang bisa ditoleransi oleh penggunanya. Big Data menjadi istilah yang populer untuk menggambarkan pertumbuhan yang eksponensial, ketersediaan, dan penggunaan informasi, baik yang terstruktur maupun tak-terstruktur. Banyak hal sudah ditulis tentang trend Big Data dan bagaimana bisa digunakan sebagai dasar inovasi, diferensiasi, dan pertumbuhan.
Dari mana sumber datangnya Big Data? Jawaban sederhananya adalah: “dari mana saja”. Sumber-sumber data yang waktu lalu diabaikan karena berbagai macam keterbatasan teknis sekarang dianggap sebagai tambang emas. Big Data bisa berasal dari log-log Web, RFID, sistem GPS, jaringan sensor-sensor, media sosial, teks-teks berbasis internet, indeks pencarian internet, catatan-catatan panggilan telphone, astronomi, biologi, genomics, fisika nuklir, eksperimentasi biokimia, catatan medis, penelitian ilmiah, pengintaian militer, arsip photography, arsip video, e-commerce skala besar, dan lain-lain.
Big Data bukanlah sesuatu yang baru. Apa yang baru adalah definisi dan struktur Big Data yang selalu berevolusi. Berbagai perusahaan sudah menyimpan dan menganalisa volume data yang besar sejak munculnya data warehouse pada awal 1990. Saat itu ukuran sebesar terrabytes menjadi sinonim dengan apa yang disebut dengan Big Data warehouse, saat ini ukuran itu menjadi petabytes, dan laju pertumbuhan volume data tersebut terus meningkat karena organisasi-organisasi selalu mencari dan menganalisa tingkat transaksi yang lebih dalam, termasuk data yang dihasilkan dari web dan berbagai macam mesin, untuk mendapatkan pemahaman yang lebih baik tentang perilaku pelanggan dan faktor-faktor pendorong bisnis.
Banyak orang (termasuk para akademisi dan snalist/pemimpin industri) mengira bahwa Big Data adalah suatu misnomer (nama yang salah). Apa yang dikatakan dan apa yang dimaksudkan tidaklah benar-benar sama. Itulah, Big Data bukanlah sekedar “big” (besar). Volume data hanyalah salah satu dari banyak karakteristik yang terkait dengan Big Data, seperti variety (keragaman jenis data), velocity (kecepatan dalam memproses data), veracity(kebenaran/akurasi atau kesesuaian dengan fakta), variability (perubahan data), dan value proposition (manfaat bisnin yang lebih besar).
Berbagai macam karakteristik “V” yang mendefinisikan Big Data
Big Data biasanya didefinisikan dengan tiga “V” yaitu: volume (jumlah data), variety (keragaman jenis data), dan velocity (kecepatan memproses data). Selain tiga tersebut, beberapa penyedia solusi Big Data yang terkenal menambahkan “V” yang lain, misalnya veracity atau akurasi data (IBM), variability atau perubahan data (SAS), dan value proposition (kemanfaatan yang lebih besar bagi bisnis)
Volume
Volume adalah ciri yang paling umum tentang Big Data. Banyak sekali faktor yang berkontribusi pada peningkatan eksponensial volume data, misalnya data yang berbasis transaksi yang disimpan bertahun-tahun, data teks yang berasal dari media sosial, data sensor yang terus menerus meningkat, data yang dihasilkan otomastis dari RFID dan GPS, dan seterusnya. Dulu, data yang berlebihan adalah masalah bagi media penyimpanan baik secara teknis maupun finansial. Sekarang dengan kemajuan teknologi dan biaya media penyimpanan yang semakin murah hal itu tidak lagi menjadi masalah penting, tetapi sebaliknya, masalah lain muncul, termasuk bagaimana menentukan relevansi data di tengah-tengah membludaknya volume data yang besar dan bagaimana membuat nilai/manfaat data yang dianggap releva tersebut.
Seperti sudah disebutkan di atas, “big” adalah kata yang relatif. Dia selalu berubah sepanjang waktu dan diartikan berbeda-beda bagi berbagai macam organisasi. Dengan peningkatan volume data yang mengejutkan, bahkan penamaan Big Data itu sendiri menjadi suatu tantangan tersendiri. Jumlah data terbesar yang dulu biasa disebut adalah petabytes (PB) sudah bergerak ke zettabytes (ZB) yang artinya satu triliun gigabytes (GB) atau satu billion terabytes.
Secara singkat riwayat volume data, pada tahun 2009 dunia memiliki data sebesar 0.8 ZB; pada tahun 2010 jumlah data sudah melebihi 1 ZB; pada akhir 2011 jumlah data menjadi 1.8 ZB. Pada 2017 atau 2018 diperkirakan jumlah data akan menjadi 35 ZB (IBM, 2013). Meskipun ukuran tersebut angat mencengangkan, begitu pula dengan tantangan dan peluang yang akan mengikutinya.
Variety
Velocity
Dalam keriuhan Big Data yang saat ini kita lihat, hampir semua orang terpaku pada “at-rest analytics (analytics yang sudah ‘fixed’, statis, dan biasa digunakan), dengan menggunakan berbagai macam software dan hardware untuk menganalisa jumlah data yang besar dari berbagai macam sumber. Meskipun ini sangat penting dan sangat bernilai, tetapi ada kategori lain dari analitycs yang berasal dari velocity dalam Big Data, yang disebut dengan “data stream analytics” atau “in-motion analytics”, yang seringkali diremehkan. Bila dilakukan dengan benar, “data stream analytics” bisa sangat bermanfaat, dan dalam beberapa lingkungan bisnis lebih bermanfaat dibandingkan dengan “at-rest analytics”.
Veracity
Veracity adalah istilah yang diperkenalkan oleh IBM yang biasanya digunakan sebagai “V” yang keempat untuk menggambarkan Big Data. Istilah ini mengacu pada kesesuaian dengan fakta yaitu: akurasi data, kualitas data, kebenaran data, tingkat kepercayaan data. Piranti dan teknik yang sering digunakan untuk menangani veracity dalam Big Data adalah dengan men-ttansformasi data menjadi insight yang berkualitas dan terpercaya.
Variability
Selain meningkatnya velocity dan variety data, aliran data bisa sangat tidak konsisten dengan puncak periodik. Apakah ada sesuatu yang sedang trending di media sosial? Barangkali ada IPO yang tinggi menjulang. Mungkin ada diskon besar-besaran paket wisata? Beban data puncak yang dipicu oleh peristiwa tertentu, musiman atau harian bisa menjadi suatu tantangan yang harus dikelola terutama yang melibatkan media sosial.
Value Proposition
Kehebohan diseputar big Data adalah value propositionnya (manfaatnya). Gagasan yang sudah dipercaya sebelumnya tentang Big Data adalah bahwa Big Data berisi (atau berisi potensi yang lebih besar) lebih banyak pola-pola dan anomali yang menarik dibandingkan dengan data yang kecil. Jadi dengan menganlisa data yang besar dan kaya dengan fitur, organisasi-organisasi bisa mendapatkan nilai/manfaat bisnis yang lebih besar. Kalau user bisa mendeteksi pola-pola dalam jumlah data yang kecil dengan menggunakan metode statistik sederhana dan metode machine learning atau query ad hoc dan berbagai macam reporting tools, maka Big Data berarti “big analytics. Dan big analytics berarti bisa memberi insight yang lebih bagus dan keputusan yang lebih bagus, sesuatu yang dibutuhkan oleh semua organisasi.
Link terkait Big Data:
Post Disclaimer
The information contained in this post is for general information purposes only. The information is provided by Pengiriman Murah Medan & Informatika: Pengertian Big Data and while we endeavour to keep the information up to date and correct, we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the website or the information, products, services, or related graphics contained on the post for any purpose. - PT Tapanuli Logistik Cargo